

Enviro Arabia 2007 (Bahrain)

Technological Advancement of SMBR – The Submerged PURON® System

Deepak Raina

KMS Product Portfolio

KMS Product Portfolio

Industrial Water & Wastewater

Municipal Water & Wastewater

Food, Dairy & Beverage **Processes**

Pharmaceutical & Chemical Processes

Development of PURON®-Technology

Product development at university of Aachen; **aachen** Sponsored by PFAU program of NRW

- 12/2001 Foundation of PURON in Aachen
 - 07/2002 Financing by venture capital
 - 08/2002 Move out of university start building up a production side
 - 12.2003 Order for the largest MBR plant in Belgium (industrial water reuse)
 - 11.2004 KMS aquires PURON AG
- 03.2005 Change to KMS GmbH

500 m² membrane area

remains brand name for KMS submerged membrane technology

central and most crucial topic to improve MBR-technology:

increasing and stabilizing the permeate flux

Requirements for module design

Clogging by hairs and fibrous material at the upper end

consequence: reduced filtration rate

- Reduction of permeate flux
 - danger of biological growth through the membranes
 - extensive pretreatment (fine screen with ≤ 1 mm)

The key factor for the technological and economical success of membrane technology is the arrangement of the membranes in a technical module

PURON has copied its product concept from nature:

- Membrane fibers are only fixed at lower end
- Move freely in the water and filtrate as seaweed
- Upper ends of the tubes are sealed
- Cleaning of the membranes is done by injection of air into the center of the single header bundles

 \rightarrow

PURON has applied the patent for this single header concept with central air injection principle in all major countries of the world

- The filters are submerged into the water to be filtrated
- Clear water is being drawn out of the membrane tubes via the lower foot element
- The single header principle ensures that hairs, fibrous substances and sludge will be removed safely out of the system, **pre-treatment is with** <u>3 mm</u> perforated screens.
 - Stable operation with reduced risk of clogging and sludging.
 - Low energy consumption.
 - Low maintenance and cleaning demand.

Modular structure of PURON®-Membrane system

View of PURON® - membrane module

High flexibility by modular design

Module aeration creates upward flow inside the module

Problem

This creates downward flow on the outside

This leads to a cross flow in the outer membranes bundles

Clogging in the top area of the outer bundles of the module

Plates on module outside to avoid clogging of outer bundles

demonstration plant shows significant reduction of clogging

PURON® Standard Module

The PURON® membranes

The heart of PURON products are:

- thin tubes
- made of inexpensive plastics (PES)

Membrane Improvements

outer cross section of membrane

Source: PURON AG, 05/2004

Mechanical strength of PURON membrane

Feet-elements are welded together

Membrane Module Dimensions

Data of a membrane module

Length	200 cm
Width	100 cm
Height without mounting device	250 cm
Number of fiber bundles per row	9
Effective fiber length	1,8 m
Membrane area	500 m²
Permeate connection	DN 80
Air connection	DN 50

PURON® demonstration plant in Simmerath Municipal Treatment Plant (Germany)

Foundation by the NRW-Government with 1.5 Mio. €

Commissioning March 2003

PURON® demonstration plant Simmerath

Free top ends of PURON® fibers in operation

Largest industrial MBR in Belgium (8.000 m² membrane area)

- Shipment of modules: June 2004
- Commissioning: October 2004

Largest industrial MBR in Belgium

Sobelgra MBR – Maltery

Parameter	Influent [mg/I]	Load [kg/day]	Effluent [mg/l]
COD	1880–2100	4000	100 – 200
BOD	700 – 930	2000	2-5
Suspended solids	330 – 460	800	0
N _{total}	35 – 50	100	1 – 2
P _{total}	13 – 15	30	< 1

Industrial Water Reuse

- PURON[®] MBR + MegaMagnum[®] RO
- Malting company
- Construction of a new WWTP due to expansion of malting facility

Treatment Plant – Overview

PURON® MBR plant

MegaMagnum[®] RO plant

PURON® reference Dendermonde (Holland) – Mitsubishi replacement

Simple, low cost installation

Capacity [m³/d]

Month

37

PURON - Membrane and module development

- Higher permeate fluxes
- Optimized sludge management (reduced clogging and sludging)
- Less energy consumption
- Reduced chemical demand
- Lower maintenance
- Longer membrane lifetime lower membrane replacement costs
- Decrease of membrane costs

there is still a high potential for optimization

we are currently at the beginning of a very promising future

End of Presentation

Thanks for your attention !

